20/06/2023

TAUTOMERISM

 

Tautomerism is a chemical phenomenon where a molecule can exist in two different forms that can rapidly switch back and forth. These different forms are called tautomers. The switch between tautomers happens because a hydrogen atom moves around within the molecule.

The most common type of tautomerism involves a molecule changing between a form with a certain arrangement of atoms (called the keto form) and a form with a slightly different arrangement of atoms (called the enol form). This change usually involves the movement of a hydrogen atom.

These different forms can have different chemical properties and behaviors. For example, they may react differently with other substances or have different levels of acidity. The balance between the different tautomeric forms depends on factors like temperature, the type of solvent, and the pH of the solution.

Tautomerism can occur under specific conditions, such as:

1. Presence of functional groups: Tautomerism is commonly observed in compounds that contain certain functional groups, such as carbonyl (C=O) and hydroxyl (OH) groups.

2. Proton transfer: Tautomerism involves the migration of a hydrogen atom or proton within the molecule. This transfer can occur when there are appropriate acidic or basic sites within the molecule.

3.  Favorable thermodynamics: Tautomerism is influenced by factors such as temperature and energy differences between the tautomeric forms. The conversion between tautomers typically occurs when it is thermodynamically favorable.

4.  Solvent effects: The choice of solvent can impact tautomerism. Different solvents can stabilize or destabilize specific tautomeric forms, leading to a shift in the equilibrium between them.

5.  pH dependence: Tautomeric equilibria can be pH-dependent. For example, in the case of keto-enol tautomerism, the enol form is typically favored under acidic conditions, while the keto form is more stable under basic conditions.

One specific example of tautomerism is the interconversion between the keto form and the enol form of a compound called tautomeric aldehydes or ketones.

Aldehydes and ketones are organic compounds that contain a carbonyl group (C=O). Tautomeric aldehydes or ketones exhibit tautomeric behavior due to the presence of certain functional groups and the ability to undergo proton transfer.

In the keto form, tautomerone has a carbonyl group (C=O) where the carbon atom is bonded to an oxygen atom. In the enol form, the carbonyl group is converted to a hydroxyl group (-OH) adjacent to a double bond.

The interconversion between the keto and enol forms occurs through the migration of a hydrogen atom. The process involves the transfer of a proton from the carbon atom adjacent to the carbonyl group (the α-carbon) to the oxygen atom of the carbonyl group, resulting in the formation of a double bond and the hydroxyl group.

Tautomeric aldehydes or ketones exist as a dynamic equilibrium mixture of the keto and enol tautomers. The ratio between the two forms is influenced by various factors, including temperature, solvent, and pH. These factors affect the stability and energy difference between the tautomeric forms.

ANSWER  (d)







04/06/2023

REACTION OF KETONE WITH GRIGNARD REAGENT

 

When a ketone reacts with a Grignard reagent, a reaction known as a Grignard reaction occurs. The reaction proceeds through a nucleophilic addition mechanism, resulting in the formation of an alcohol.

The Grignard reagent, which is an organomagnesium compound, acts as a strong nucleophile and attacks the carbonyl carbon of the ketone. The resulting intermediate is an alkoxide ion, which then protonates to form the corresponding alcohol.

ANSWER (a)


Featured post

ILMU PENEGETAHUAN

Ilum engetahuan sering dianggap sebagai salah satu aset paling berharga yang dimiliki oleh individu atau organisasi. Ia adalah pemahaman dan...